Arithmatical - Logarithms
DIRECTIONS : Problems based on Logs.
6. |
The value of log2(log5625) is |
|
A. 2 |
|
B. 5 |
|
C. 10 |
|
D. 15 |
Solution |
Let log5625 | = x. |
Then, 5x | = 625 |
= 54 |
‹=› x=4. |
Let log2( log5625) | = y. |
Then, log 24= y |
‹=› 2y= 4 |
y;2. |
|
7. |
The value of log5(1/ 125) is |
|
A. 3 |
|
B. -3 |
|
C. 1/3 |
|
D. -1/3 |
Solution |
Let log5(1/125) | = n. |
Then, 5n= 1/125 |
‹=›5n =5-3 |
n= -3. |
|
8. |
If logx y =100 and log2 x =10, then the values of y is |
|
A. 210 |
|
B. 2100 |
|
C. 21000 |
|
D. 210000 |
Solution |
log2 x | = 10 |
x= 210 |
logx y | = 100 |
y= x100 |
=(210)100 |
y‹=›21000 |
|
9. |
Evaluate :log3 27 |
|
A. 3 |
|
B. 4 |
|
C. 5 |
|
D. 6 |
Solution |
log3 27 | = n |
=3n |
=27 |
=33 |
n‹=›3. |
|
10. |
If log√8 x = 3×1/3, find the value of x. |
|
A. 25 |
|
B. 32 |
|
C. 37 |
|
D. None of these |
s
Solution |
log√8 x | = 10/3. |
x | =( √8)10/3 |
=2( 3/2×10/3) |
=2 5 |
= 32. |
|