Arithmatical - Logarithms

DIRECTIONS : Problems based on Logs.
1. If log 2 = 0.30103, the number of digits in 520 is
  A.  14
  B.  16
  C.  18
  D.  25
Solution
Log 520=20 log 5
=20 ×[log(10/2)]
=20 (log 10 - log 2)
=20 (1 - 0.3010)
=20×0.6990
=13.9800.
Characteristics= 13.
Hence, the number of digits in Log 520 is 14.
2. The value of log2 16 is
  A.  1/8
  B.  4
  C.  8
  D.  16
Solution
Let log216= n.
Then, 2n= 16
= 24
‹=› n=4.

3. If log 32 x= 0.8, then x is equal to
  A.  25.6
  B.  16
  C.  10
  D.  12.8
Solution
log32 x =0.8.
x=(32)0.8
‹=›(25)4/5
‹=›24
‹=› 16.
4. The value of log343 7 is
  A.  1/3
  B.  - 3
  C.  - 1/3
  D.  3
Solution
Let log3437= n.
Then, 343n= 7
= (73)n = 7.
‹=›3 n = 1
‹=›n = 1/3.
log343 7= 1/3.
5. If logx 4 = 1/4, then x is equal to
  A.  16
  B.  64
  C.  128
  D.  256
Solution
log x 4= 1/4
‹=› x 1/4
= 4
‹=›x= 44
= 256.
Page 1 of 4 1234