Arithmatical - Logarithms
DIRECTIONS : Problems based on Logs.
1. |
If log 2 = 0.30103, the number of digits in 520 is |
|
A. 14 |
|
B. 16 |
|
C. 18 |
|
D. 25 |
Solution |
Log 520 | =20 log 5 |
=20 ×[log(10/2)] |
=20 (log 10 - log 2) |
=20 (1 - 0.3010) |
=20×0.6990 |
=13.9800. |
Characteristics | = 13. |
Hence, the number of digits in Log 520 is 14. |
|
2. |
The value of log2 16 is |
|
A. 1/8 |
|
B. 4 |
|
C. 8 |
|
D. 16 |
Solution |
Let log216 | = n. |
Then, 2n | = 16 |
= 24 |
‹=› n=4. |
|
3. |
If log 32 x= 0.8, then x is equal to |
|
A. 25.6 |
|
B. 16 |
|
C. 10 |
|
D. 12.8 |
Solution |
log32 x | =0.8. |
x=(32)0.8 |
‹=›(25)4/5 |
‹=›24 |
‹=› 16. |
|
4. |
The value of log343 7 is |
|
A. 1/3 |
|
B. - 3 |
|
C. - 1/3 |
|
D. 3 |
Solution |
Let log3437 | = n. |
Then, 343n | = 7 |
= (73)n = 7. |
‹=›3 n = 1 |
‹=›n = 1/3. |
log343 7 | = 1/3. |
|
5. |
If logx 4 = 1/4, then x is equal to |
|
A. 16 |
|
B. 64 |
|
C. 128 |
|
D. 256 |
Solution |
log x 4 | = 1/4 |
‹=› x 1/4 |
= 4 |
‹=›x= 44 |
= 256. |
|