Arithmatical - Surds and Indices

6. Given that 100.48 = x, 100.70 = y and xz = y², then the value of z is close to
  A.  1.45
  B.  1.88
  C.  2.9
  D.  3.7
Solution
xz = y²<=> (10 0.48 )z
<=> (100.70)2
= (10 0.48z)
= (10(2×0.70))
= 101.40
0.48z = 1.40 z= 140/48
= 35/12
= 2.9(approx.).
7. The value of (256)5/4 is
  A.  984
  B.  512
  C.  1014
  D.  1024
Solution
(256)5/4=(44)5/4
=4(4x5/4)
= 45
= 1024.

8. If 3(x-y)= 27 and 3(x+y)=243, then x is equal to
  A.  0
  B.  2
  C.  4
  D.  6
Solution
3(x - y)= 27
= 33
x - y = 3. ......(1)
3(x+y)= 243
= 35
x + y = 5. .......(2)
On solving equations 1 and 2, we get = x=4.
9. If ax =b, by= c and cz= a, then the value of xyz is
  A.  0
  B.  1
  C.  2
  D.  abc
Solution
a1= cz
=(by)y
=(byz)
=(ax)yz
Therefore,xyz= 1
10. 49× 49× 49× 49 = ?
  A.  4
  B.  7
  C.  8
  D.  16
Solution
49× 49× 49× 49= (72 ×72 ×72 ×72
= 7(2+2++2+2)
= 78
So, the correct answer is 8.
Page 2 of 3 1 23