Arithmatical - Surds and Indices
6. |
Given that 100.48 = x, 100.70 = y and xz = y², then the value of z is close to |
|
A. 1.45 |
|
B. 1.88 |
|
C. 2.9 |
|
D. 3.7 |
Solution |
xz = y² | <=> (10 0.48 )z |
<=> (100.70)2 |
= (10 0.48z) |
= (10(2×0.70)) |
= 101.40 |
0.48z = 1.40 | z= 140/48 |
= 35/12 |
= 2.9(approx.). |
|
7. |
The value of (256)5/4 is |
|
A. 984 |
|
B. 512 |
|
C. 1014 |
|
D. 1024 |
Solution |
(256)5/4 | =(44)5/4 |
=4(4x5/4) |
= 45
|
= 1024. |
|
8. |
If 3(x-y)= 27 and 3(x+y)=243, then x is equal to |
|
A. 0 |
|
B. 2 |
|
C. 4 |
|
D. 6 |
Solution |
3(x - y) | = 27 |
= 33 |
x - y = 3. ......(1) |
3(x+y) | = 243 |
= 35 |
x + y = 5. .......(2) |
On solving equations 1 and 2, we get | = x=4. |
|
9. |
If ax =b, by= c and cz= a, then the value of xyz is |
|
A. 0 |
|
B. 1 |
|
C. 2 |
|
D. abc |
Solution |
a1 | = cz |
=(by)y |
=(byz) |
=(ax)yz |
Therefore, | xyz= 1 |
|
10. |
49× 49× 49× 49 = ? |
|
A. 4 |
|
B. 7 |
|
C. 8 |
|
D. 16 |
Solution |
49× 49× 49× 49 | = (72 ×72 ×72 ×72 |
= 7(2+2++2+2) |
= 78 |
So, the correct answer is 8. |
|